Some useful tools for forecast reconciliation through temporal hierarchies.
Arguments
- agg_order
Highest available sampling frequency per seasonal cycle (max. order of temporal aggregation, \(m\)), or a vector representing a subset of \(p\) factors of \(m\).
- fh
Forecast horizon for the lowest frequency (most temporally aggregated) time series (default is
1
).- tew
A string specifying the type of temporal aggregation. Options include: "
sum
" (simple summation, default), "avg
" (average), "first
" (first value of the period), and "last
" (last value of the period).- sparse
Option to return sparse matrices (default is
TRUE
).
Value
A list with five elements:
- dim
A vector containing information about the maximum aggregation order (
m
), the number of factor (p
), the partial (ks
) and total sum (kt
) of factors.- set
The vector of the temporal aggregation orders (in decreasing order).
- agg_mat
The temporal linear combination or aggregation matrix.
- strc_mat
The temporal structural matrix.
- cons_mat
The temporal zero constraints matrix.
See also
Temporal framework:
teboot()
,
tebu()
,
tecov()
,
telcc()
,
temo()
,
terec()
,
tetd()
Utilities:
FoReco2matrix()
,
aggts()
,
balance_hierarchy()
,
commat()
,
csprojmat()
,
cstools()
,
ctprojmat()
,
cttools()
,
df2aggmat()
,
lcmat()
,
recoinfo()
,
res2matrix()
,
shrink_estim()
,
teprojmat()
,
unbalance_hierarchy()