Shrinkage of the covariance matrix using the Oracle approximation
Source:R/fun_export.R
shrink_oasd.Rd
Shrinkage of the covariance matrix according to the Oracle Approximating Shrinkage (OAS) of Chen et al. (2009) and Ando and Xiao (2023).
Arguments
- x
A numeric matrix containing the in-sample residuals.
- mse
If
TRUE
(default), the residuals used to compute the covariance matrix are not mean-corrected.
References
Ando, S., and Xiao, M. (2023), High-dimensional covariance matrix estimation: shrinkage toward a diagonal target. IMF Working Papers, 2023(257), A001. doi:10.5089/9798400260780.001.A001
Chen, Y., Wiesel, A., and Hero, A. O. (2009), Shrinkage estimation of high dimensional covariance matrices, 2009 IEEE international conference on acoustics, speech and signal processing, 2937–2940. IEEE.
See also
Utilities:
FoReco2matrix()
,
aggts()
,
balance_hierarchy()
,
commat()
,
csprojmat()
,
cstools()
,
ctprojmat()
,
cttools()
,
df2aggmat()
,
lcmat()
,
recoinfo()
,
res2matrix()
,
set_bounds()
,
shrink_estim()
,
teprojmat()
,
tetools()
,
unbalance_hierarchy()