This function performs forecast reconciliation for a single time series using temporal hierarchies (Athanasopoulos et al., 2017, Nystrup et al., 2020). The reconciled forecasts can be computed using either a projection approach (Byron, 1978, 1979) or the equivalent structural approach by Hyndman et al. (2011). Non-negative (Di Fonzo and Girolimetto, 2023) and immutable reconciled forecasts can be considered.
Usage
terec(base, agg_order, comb = "ols", res = NULL, tew = "sum",
approach = "proj", nn = NULL, settings = NULL, bounds = NULL,
immutable = NULL, ...)
Arguments
- base
A (\(h(k^\ast + m) \times 1\)) numeric vector containing base forecasts to be reconciled ordered from the lowest frequency to the highest frequency; \(m\) is the max aggregation order, \(k^\ast\) is the sum of (a subset of) (\(p-1\)) factors of \(m\), excluding \(m\), and \(h\) is the forecast horizon for the lowest frequency time series.
- agg_order
Highest available sampling frequency per seasonal cycle (max. order of temporal aggregation, \(m\)), or a vector representing a subset of \(p\) factors of \(m\).
- comb
A string specifying the reconciliation method. For a complete list, see tecov.
- res
A (\(N(k^\ast+m) \times 1\)) optional numeric vector containing the in-sample residuals at all the temporal frequencies ordered from the lowest frequency to the highest frequency. This vector is used to compute come covariance matrices.
- tew
A string specifying the type of temporal aggregation. Options include: "
sum
" (simple summation, default), "avg
" (average), "first
" (first value of the period), and "last
" (last value of the period).- approach
A string specifying the approach used to compute the reconciled forecasts. Options include:
- nn
A string specifying the algorithm to compute non-negative reconciled forecasts:
"
osqp
": quadratic programming optimization (osqp solver)."
sntz
": heuristic "set-negative-to-zero" (Di Fonzo and Girolimetto, 2023).
- settings
An object of class
osqpSettings
specifying settings for the osqp solver. For details, refer to the osqp documentation (Stellato et al., 2020).- bounds
A (\((k^\ast + m) \times 2\)) numeric matrix specifying the temporal bounds. The first column represents the lower bound, and the second column represents the upper bound.
- immutable
A matrix with two columns (\(k,j\)), such that
- Column 1
Denotes the temporal aggregation order (\(k = m,\dots,1\)).
- Column 2
Indicates the temporal forecast horizon (\(j = 1,\dots,m/k\)).
For example, when working with a quarterly time series:
t(c(4, 1))
- Fix the one step ahead annual forecast.t(c(1, 2))
- Fix the two step ahead quarterly forecast.
- ...
Arguments passed on to
tecov
mse
If
TRUE
(default) the residuals used to compute the covariance matrix are not mean-corrected.shrink_fun
Shrinkage function of the covariance matrix, shrink_estim (default)
References
Athanasopoulos, G., Hyndman, R.J., Kourentzes, N. and Petropoulos, F. (2017), Forecasting with Temporal Hierarchies, European Journal of Operational Research, 262, 1, 60-74. doi:10.1016/j.ejor.2017.02.046
Byron, R.P. (1978), The estimation of large social account matrices, Journal of the Royal Statistical Society, Series A, 141, 3, 359-367. doi:10.2307/2344807
Byron, R.P. (1979), Corrigenda: The estimation of large social account matrices, Journal of the Royal Statistical Society, Series A, 142(3), 405. doi:10.2307/2982515
Di Fonzo, T. and Girolimetto, D. (2023), Spatio-temporal reconciliation of solar forecasts, Solar Energy, 251, 13–29. doi:10.1016/j.solener.2023.01.003
Hyndman, R.J., Ahmed, R.A., Athanasopoulos, G. and Shang, H.L. (2011), Optimal combination forecasts for hierarchical time series, Computational Statistics & Data Analysis, 55, 9, 2579-2589. doi:10.1016/j.csda.2011.03.006
Nystrup, P., Lindström, E., Pinson, P. and Madsen, H. (2020), Temporal hierarchies with autocorrelation for load forecasting, European Journal of Operational Research, 280, 1, 876-888. doi:10.1016/j.ejor.2019.07.061
Stellato, B., Banjac, G., Goulart, P., Bemporad, A. and Boyd, S. (2020), OSQP: An Operator Splitting solver for Quadratic Programs, Mathematical Programming Computation, 12, 4, 637-672. doi:10.1007/s12532-020-00179-2
Examples
set.seed(123)
# (7 x 1) base forecasts vector (simulated), m = 4
base <- rnorm(7, rep(c(20, 10, 5), c(1, 2, 4)))
# (70 x 1) in-sample residuals vector (simulated)
res <- rnorm(70)
m <- 4 # from quarterly to annual temporal aggregation
reco <- terec(base = base, agg_order = m, comb = "wlsv", res = res)
# Immutable reconciled forecast
# E.g. fix all the quarterly forecasts
imm_q <- expand.grid(k = 1, j = 1:4)
immreco <- terec(base = base, agg_order = m, comb = "wlsv",
res = res, immutable = imm_q)
# Non negative reconciliation
base[7] <- -base[7] # Making negative one of the quarterly base forecasts
nnreco <- terec(base = base, agg_order = m, comb = "wlsv",
res = res, nn = "osqp")
recoinfo(nnreco, verbose = FALSE)$info
#> obj_val run_time iter pri_res status status_polish
#> 1 -421.8914 4.2499e-05 25 8.587788e-16 1 1