Some useful tools for the cross-sectional forecast reconciliation of a linearly constrained (e.g., hierarchical/grouped) multiple time series.
Arguments
- agg_mat
A (\(n_a \times n_b\)) numeric matrix representing the cross-sectional aggregation matrix. It maps the \(n_b\) bottom-level (free) variables into the \(n_a\) upper (constrained) variables.
- cons_mat
A (\(n_a \times n\)) numeric matrix representing the cross-sectional zero constraints. It spans the null space for the reconciled forecasts.
- sparse
Option to return sparse matrices (default is
TRUE
).
Value
A list with four elements:
- dim
A vector containing information about the number of series for the complete system (
n
), for upper levels (na
) and bottom level (nb
).- agg_mat
The cross-sectional aggregation matrix.
- strc_mat
The cross-sectional structural matrix.
- cons_mat
The cross-sectional zero constraints matrix.
See also
Cross-sectional framework:
csboot()
,
csbu()
,
cscov()
,
cslcc()
,
csmo()
,
csrec()
,
cstd()
Utilities:
FoReco2matrix()
,
aggts()
,
balance_hierarchy()
,
commat()
,
csprojmat()
,
ctprojmat()
,
cttools()
,
df2aggmat()
,
lcmat()
,
recoinfo()
,
res2matrix()
,
shrink_estim()
,
teprojmat()
,
tetools()
,
unbalance_hierarchy()
Examples
# Cross-sectional framework
# One level hierarchy A = [1 1]
A <- matrix(1, 1, 2)
obj <- cstools(agg_mat = A)