Projection matrix for optimal combination temporal reconciliation
Source:R/proj_matrix.R
teprojmat.Rd
This function computes the projection or the mapping matrix \(\mathbf{M}\) and \(\mathbf{G}\), respectively, such that \(\widetilde{\mathbf{y}} = \mathbf{M}\widehat{\mathbf{y}} = \mathbf{S}_{te}\mathbf{G}\widehat{\mathbf{y}}\), where \(\widetilde{\mathbf{y}}\) is the vector of the reconciled forecasts, \(\widehat{\mathbf{y}}\) is the vector of the base forecasts, \(\mathbf{S}_{te}\) is the temporal structural matrix, and \(\mathbf{M} = \mathbf{S}_{te}\mathbf{G}\). For further information regarding on the structure of these matrices, refer to Girolimetto et al. (2023).
Arguments
- agg_order
Highest available sampling frequency per seasonal cycle (max. order of temporal aggregation, \(m\)), or a vector representing a subset of \(p\) factors of \(m\).
- comb
A string specifying the reconciliation method. For a complete list, see tecov.
- res
A (\(N(k^\ast+m) \times 1\)) optional numeric vector containing the in-sample residuals at all the temporal frequencies ordered from the lowest frequency to the highest frequency. This vector is used to compute come covariance matrices.
- mat
A string specifying which matrix to return: "
M
" (default) for \(\mathbf{M}\) and "G
" for \(\mathbf{G}\).- tew
A string specifying the type of temporal aggregation. Options include: "
sum
" (simple summation, default), "avg
" (average), "first
" (first value of the period), and "last
" (last value of the period).- ...
Arguments passed on to
tecov
mse
If
TRUE
(default) the residuals used to compute the covariance matrix are not mean-corrected.shrink_fun
Shrinkage function of the covariance matrix, shrink_estim (default)
Value
The projection matrix \(\mathbf{M}\) (mat = "M"
) or
the mapping matrix \(\mathbf{G}\) (mat = "G"
).
References
Girolimetto, D., Athanasopoulos, G., Di Fonzo, T. and Hyndman, R.J. (2024), Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues. International Journal of Forecasting, 40, 3, 1134-1151. doi:10.1016/j.ijforecast.2023.10.003
See also
Utilities:
FoReco2matrix()
,
aggts()
,
balance_hierarchy()
,
commat()
,
csprojmat()
,
cstools()
,
ctprojmat()
,
cttools()
,
df2aggmat()
,
lcmat()
,
recoinfo()
,
res2matrix()
,
shrink_estim()
,
tetools()
,
unbalance_hierarchy()