
Forecast Combination andReconciliationForecast Combination andReconciliation

Daniele Girolimetto
Department of Statistical Sciences, University of Padova

� danigiro.github.io
§ github.com/danigiro
@ daniele.girolimetto@unipd.it

Quantitative Economics seminar, Maastricht University

Maastricht, Netherlands – 01/10/2025

https://danigiro.github.io/FoReco/
https://danigiro.github.io/FoCo2/
https://danigiro.github.io/FoRecoPy/
https://danigiro.github.io/
https://github.com/danigiro
mailto:daniele.girolimetto@unipd.it


Who I am

* I’m a Postdoctoral Researcher at the University of Padova

Û Research interests

¢ (Multivariate) economic time series (e.g. energy, finance, macroeconomic)

y Forecast combination and reconciliation

Ð Statistical software

I FoReco: Forecast Reconciliation

3 FoRecoPy: Forecast Reconciliation in Python

I FoCo2 : Coherent Forecast Combination
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Today’s contributions
Joint work with Prof. Tommaso Di Fonzo

Bates and Granger (1969): linear forecast combination

+

Stone et al. (1942): constrained multivariate least-squares adjustment

"

optimal combined and coherent forecasts
for multiple linearly constrained time series

New result that unifies linear forecast reconciliation and combination in a simultaneous
and statistically justified way, improving accuracy and ensuring coherence of the forecasts

� arXiv.2412.03429

Forecast Combination and Reconciliation | Daniele Girolimetto 3

https://doi.org/10.48550/arXiv.2412.03429


Today’s contributions
Joint work with Prof. Tommaso Di Fonzo

Bates and Granger (1969): linear forecast combination

+

Stone et al. (1942): constrained multivariate least-squares adjustment

"

optimal combined and coherent forecasts
for multiple linearly constrained time series

New result that unifies linear forecast reconciliation and combination in a simultaneous
and statistically justified way, improving accuracy and ensuring coherence of the forecasts

� arXiv.2412.03429

Forecast Combination and Reconciliation | Daniele Girolimetto 3

https://doi.org/10.48550/arXiv.2412.03429


Overview

Single-task forecast combination
(Bates and Granger, 1969; Timmermann, 2006)

−→ multiple experts, no coherence

Local: one variable ↑
Global: n ≥ 2 variables ↓

Forecast reconciliation
(Stone et al., 1942; Hyndman et al., 2011)

−→ single expert and coherence

Multi-task forecast combination
(On the top of Sun and Deng, 2004 and
Lavancier and Rochet, 2016)

−→ multiple experts, no coherence

Sequential coherent combination

Optimal coherent combination

}
→ multiple experts and coherence
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Linear forecast combination
Bates and Granger (1969); Timmermann (2006)

Multiple forecasts of a single variable made by p ≥ 2 different experts are combined to
produce a new forecast

Strengths and weaknesses of each expert (e.g., different models) are exploited to improve
forecast accuracy

Single-task linear forecast combination: ŷ ci = ω⊤
i ŷi =

p∑
j=1

ωij ŷ
j
i

ŷi is the vector of p forecasts
ωi ∈ Rp is the vector of combination weights:
• ew → equal weights
• owvar → optimal weights inversely proportional to MSE (Bates and Granger, 1969)
• owcov → optimal weights in the unit simplex with MSE matrix (Conflitti et al., 2015)
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Forecast reconciliation
Athanasopoulos et al. (2024)

T

A B

AA AB BA BB BC

Constraints

T = A + B

A = AA + AB

B = BA + BB + BC

Genuine hierarchical time series
Collection of n time series organized in a
tree-like structure of aggregation
The structure is nested, aggregation moves
from bottom to upper levels

AA

AB

B

C

D

A

X

Constraints

X = A+ B

X = C+ D

A = AA + AB

General linearly constrained time series
Collection of n time series subjected to lin-
ear constraints (not just sums)
Hierarchical and grouped structures are spe-
cial cases of linearly constrained systems

T A B

Z AZ BZ
Y AY BY

Constraints
T = A + B
A = AZ + AY
B = BZ + BY
T = Z + Y
Z = AZ + BZ
Y = AY + BY

Grouped time series
Collection of n time series defined by cross-
classifications rather than hierarchy
Two or more genuine hierarchies sharing the
same top and bottom variables

1. Forecast all series at all levels of aggregation → base forecasts (single expert)

2. Make the base forecasts coherent (post-forecasting process) → reconciled forecasts

Target Base forecasts Reconciled forecasts
Cy = 0 Cŷ ̸= 0 → Cỹ = 0
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E.g.: sales by product × channel, tourism by region × purpose, or energy generation by fuel type × geography
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Linear forecast reconciliation | Daniele Girolimetto 6



Optimal linear forecast reconciliation
Athanasopoulos et al. (2024); Stone et al. (1942)

Projection approach (zero-constrained representation)

ŷ = y + ε s.t. Cy = 0 ⇒ min
y

(ŷ − y)⊤W−1(ŷ − y) s.t. Cy = 0

⇒ ỹ =

[
I − WC⊤

(
CWC⊤

)−1
C
]
ŷ = Mŷ

In practice, approximate forms of W are used, possibly using training set residuals

$ shrinkage approximation (Wickramasuriya et al., 2019):

W = λ̂ŴD + (1− λ̂)Ŵ1

Ŵ1 is the covariance matrix of the one-step ahead in-sample errors (êt = yt − ŷt),
ŴD = In ⊙ Ŵ1, where ⊙ denotes the Hadamard product
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Temporal and cross-temporal frameworks
Athanasopoulos et al. (2017); Di Fonzo and Girolimetto (2023)

Temporal framework

Y

S1 S2

Q1 Q2 Q3 Q4

Quarterly hierarchy:
quarterly, semi-annual and annual series

One variable observed at different frequencies

Non-overlapping aggregation (or linear

combination) of the observations of a time

series at regular intervals

Cross-temporal framework
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Coherent forecast combination
Girolimetto and Di Fonzo (2024b): n variables, p experts

Starting points:

• Target vector y ∈ Rn s.t. Cy = 0(nu×1)

• Base forecasts of the n individual variables made by p ≥ 2 experts:

ŷ1 ∈ Rn1 , . . . , ŷp ∈ Rnp 1 ≤ nj ≤ n, j = 1, . . . , p

Unbalanced case: the forecasts provided by each expert might refer to different sets of
individual variables → (m =

∑p
j=1 nj)

Selection matrix : L = Diag (L1, . . . ,Lp) ∈ {0, 1}m×np, where Lj ∈ {0, 1}nj×n selects the
nj ≤ n entries of y for which base forecasts of the j-th expert are available

Balanced case: nj = n ⇒ L = Im, m = np
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Sequential coherent forecast reconciliation
Girolimetto and Di Fonzo (2024b)

combination + reconciliation

Step 1

Step 2

Forecast combination

Forecast reconciliation

{
ew
owvar
owcov

ỹ c
scr

ŷ1 ŷ j ŷp
. . .. . .

ŷ c

reconciliation + simple average

Step 1

Step 2

Forecast reconciliation

Simple average ỹ c
src

ỹ1 ỹ j ỹp
. . .. . .

ŷ1 ŷ j ŷp
. . .. . .

p src approach is limited to the balanced case and does not apply to more general situations

In the following, we consider scrvar and scrcov, with owvar and owcov, respectively

In the working paper, we discuss also about screw and src
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Optimal coherent forecast combination
Girolimetto and Di Fonzo (2024b): n variables, p experts

Assuming unbiased base forecasts,

ŷ j
i = yi + ε j

i , i = 1, . . . , n, j = 1, . . . , p

Linear relationship linking ŷ and y : as

ŷ =

ŷ1
...

ŷp

 = Ky + ε, s.t. Cy = 0(nu×1)

where K = L (1p ⊗ In) ∈ {0, 1}m×np, and ε is a zero-mean random vector with (m ×m)
covariance matrix W = E (εε⊤)

Linearly constrained quadratic program:

ỹ c = argmin
y

(ŷ − Ky)⊤ W−1 (ŷ − Ky) s.t. Cy = 0(nu×1)
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MMSE linear coherent combined forecasts
� arXiv.2412.03429

The minimum mean square error (MMSE) linear coherent combined forecast vector is given by

ỹ c = M Ω⊤ ŷ

maps ŷ ∈ Rm → ŷ c ∈ Rn

projects ŷ c → S = {y ∈ Rn | Cy = 0(nu×1)}

with weight matrix Ψ⊤ = MΩ⊤ ∈ Rn×m and error covariance matrix W̃c = MWc , where

Ω = W−1KWc , Wc =
(
K⊤W−1K

)−1
M =

[
In − WcC⊤

(
CWcC⊤

)−1
C
]

Property: ỹ c is unbiased and LjW̃cL⊤
j ⪯ LjWcL⊤

j ⪯ Wj , j = 1, . . . , p
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Graphical visualisation
2 experts, n variables

S

R1R2

y

1. R1 and R2 show the most
likely direction of deviations
from the coherent subspace
S for the 2 experts.
The black dot y denotes the
(unknown) target forecast.

ỹ c = M Ω⊤ ŷ
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Graphical visualisation
2 experts, n variables

S

R1R2

ŷ 1

ŷ 2

y

2. Red and orange points indi-
cate the potential base fore-
casts for the 2 experts, ŷ1

and ŷ2, respectively

⇓

ŷ =

[
ŷ1

ŷ2

]

ỹ c = M Ω⊤ ŷ̂y
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Graphical visualisation
2 experts, n variables

S

R1R2

ŷ 1

ŷ 2

ŷ c

3. Blue points represent the
unbiased MMSE linear
multi-task combined fore-
casts, ŷ c = Ω⊤ŷ .

ỹ c = M Ω⊤ ŷ̂yΩ⊤
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Graphical visualisation
2 experts, n variables

S

R1R2

ŷ 1

ŷ 2

ŷ c

ỹ c

4. Green points represent the
unbiased MMSE linear co-
herent combined forecasts,
ỹ c = MΩ⊤ŷ , as an oblique
projection of ŷ c on S.

ỹ c = M Ω⊤ ŷ̂yΩ⊤ỹ c = M
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About the covariance matrix
� arXiv.2412.03429

Matrix W determines how the base forecasts are combined, and then the nature of the
coherent forecasts

Special case: by-expert block-diagonal shrunk error covariance matrix (occ)

W =



Ŵ1,shr . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . Ŵj,shr . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . Ŵp,shr


j=1,...,p−−−−−−→



Ŵj,shr = λ̂j

(
In ⊙ Ŵj

)
+

(
1− λ̂j

)
Ŵj

Ŵj =
1

T

T∑
t=1

ε̂jt ε̂
j⊤
t

λ̂j → Schäfer and Strimmer (2005)

How to estimate W :
1. in-sample errors (reconciliation) $ Australian electricity generation dataset
2. validation errors (combination) $ Italian energy load dataset by Terna
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Italian energy load forecasting by Terna
Terna is the Europe’s largest independent electricity Transmission System Operator (TSO)
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Terna processes the official statistics of the entire national electricity sector and is
responsible for official communications to international bodies such as Eurostat, UN, . . .

Among the various activities, Terna currently publishes on its data portal very short-term
load forecasts for the next day, at national level and disaggregated by 7 bidding zones

Historical 15-minutes time series of observed and forecast load may be easily downloaded
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The forecasting experiment
15-min data: rolling forecast experiment with daily iterations (2024) and 96-step ahead forecast horizons

Calabria

Centre−North

Centre−South

North

Sardinia

Sicily

South

Bidding zones 8 variables $ Italy + 7 Bidding Zones (BZ)

Range: 1/1/2023 – 31/12/2024 with 365 days as valida-
tion set to compute optimal weights and error covariance
matrices

Test set: all the 366 days of 2024

Accuracy evaluation: AvgRelMAE (geometric Average
Relative Mean Absolute Error) and DM-test

Coherency issue: The aggregated forecasts for the 7 BZ
must match the forecasts for Italy
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Forecast and combination approaches
R package: FoCo2 (Girolimetto and Di Fonzo, 2024a)

Base forecasts:

� Terna, exploiting a comprehensive set of influencing factors, including meteorological
data, climate trends, and socio-economic variables

� the daily random walk (drw): ŷi ,t+h|t = yi ,t−96+h

Local-single-task combination procedures

� Equal weights (ew)

� Optimal single-task combination (owvar and owcov)

Global-multi-task combination procedures

� Sequential local-combination-then-reconciliation (scrvar and scrcov)

� Optimal multi-task combination (occ) using a by-expert block-diagonal shrunk error
covariance matrix

Legend: incoherent / coherent forecasts
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AvgRelMAE
Bold entries identify the best approach. Red denotes approaches worse then Terna (benchmark)

Country and 7 bidding zones

App. Italy North C-North C-South South Calabria Sicily Sardinia BTS All

drw 4.6781 5.7847 5.1689 4.4872 6.0555 4.5870 3.1265 2.2250 4.2710 4.3199

ew 2.5376 3.0746 2.7368 2.3780 3.1048 2.4001 1.7056 1.2877 2.2872 2.3171
owvar 0.9930 0.9980 0.9909 0.9897 0.9943 0.9879 0.9663 0.9282 0.9791 0.9808
owcov 0.9863 0.9905 0.9847 0.9847 0.9930 0.9854 0.9676 0.9312 0.9765 0.9777

scrvar 0.9863 0.9977 0.9889 0.9881 0.9927 0.9867 0.9648 0.9267 0.9777 0.9787
scrcov 0.9827 0.9911 0.9841 0.9844 0.9926 0.9848 0.9674 0.9309 0.9763 0.9771
occ 0.8973 0.8997 0.8969 0.8966 0.8952 0.8947 0.8936 0.8936 0.8958 0.8960

When using the global approaches, either two-step or optimal, more accurate forecasts are
obtained

occ approach consistently outperforms Terna and all the other combinations
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Diebold-Mariano tests for each 15-min forecast horizon
Terna vs occ forecasts – 96 different forecast horizons – absolute loss – Italy

Italy
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p−value>=0.05

Original data

occ significantly outperforms Terna in ∼ 86% of the cases, with no improvements
between 1 – 4 pm

Terna never significantly improve with respect to occ
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Conclusions

We propose a novel method to address the challenge of combining forecasts from multiple
experts for linearly constrained time series. This method ensures coherent forecasts

We show that a coherent combination approach produces significantly more accurate
forecasts immediately after Terna publishes the previous day’s energy load and the current
day’s forecasts on its data portal

In the working paper, we expand on today’s presentation with simulations and an additional
real-world application on Australian daily electricity generation

"
The optimal coherent combination almost always provides the most accurate forecasts

Future research: investigate the roles of M , Ω and W in the MMSE formula, and extend
the framework to temporal, cross-temporal and probabilistic forecasting

Conclusions | Daniele Girolimetto 20



Coherent forecast combination for linearly constrained multiple time series

Daniele Girolimetto→, Tommaso Di Fonzo

Department of Statistical Sciences, University of Padua, Padova 35121, Italy

Abstract

Linearly constrained multiple time series may be encountered in many practical contexts, such as the

National Accounts (e.g., GDP disaggregated by Income, Expenditure and Output), and multilevel

frameworks where the variables are organized according to hierarchies or groupings, like the total

energy consumption of a country disaggregated by region and energy sources. In these cases, when

multiple incoherent base forecasts for each individual variable are available, a forecast combination-

and-reconciliation approach, that we call coherent forecast combination, may be used to improve the

accuracy of the base forecasts and achieve coherence in the final result. In this paper, we develop

an optimization-based technique that combines multiple unbiased base forecasts while assuring the

constraints valid for the series. We present closed form expressions for the coherent combined forecast

vector and its error covariance matrix in the general case where a di!erent number of forecasts is

available for each variable. We also discuss practical issues related to the covariance matrix that

is part of the optimal solution. Through simulations and a forecasting experiment on the daily

Australian electricity generation hierarchical time series, we show that the proposed methodology, in

addition to adhering to sound statistical principles, may yield in significant improvement on base

forecasts, single-task combination and single-expert reconciliation approaches as well.

Keywords: Forecasting; Linearly constrained multiple time series; Coherent forecasts; Forecast

combination; Forecast reconciliation; Australian electricity generation
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AvgRelMAE for the Australian electricity generation dataset
Red: worse than the benchmark (ew). Bold: the best approach. Italic: second best approach

Forecast horizon

Approach h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 1:7

Base (incoherent forecasts) and single model reconciliation
tbats 1.0796 1.0780 1.0445 1.0270 1.0322 1.0288 1.0142 1.0393
tbatsshr 1.0478 1.0577 1.0304 1.0108 1.0219 1.0213 1.0116 1.0257
Combination (incoherent forecasts)
ew 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
owvar 0.9840 0.9881 0.9995 1.0032 1.0020 1.0028 1.0054 0.9995
owcov 1.0279 1.0494 1.0972 1.1103 1.1009 1.0993 1.1055 1.0908
Coherent combination
src 0.9827 0.9855 0.9863 0.9833 0.9852 0.9873 0.9911 0.9859
screw 0.9875 0.9898 0.9859 0.9859 0.9885 0.9905 0.9962 0.9890
scrvar 0.9586 0.9683 0.9838 0.9942 0.9982 1.0017 1.0114 0.9910
scrcov 1.0026 1.0287 1.0795 1.0972 1.0942 1.0913 1.0981 1.0773
occ 0.9481 0.9560 0.9754 0.9831 0.9891 0.9939 0.9993 0.9808
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MCB Nemenyi test
R package tsutils (Kourentzes, 2023). The Friedman test p-value is reported in the lower right corner.
The mean rank of each approach is shown to the right of its name. Statistical differences are indicated if
the intervals of two forecast procedures do not overlap
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Diebold and Mariano (1995) test
Pairwise DM-test results evaluated using absolute loss (top panels) and quadratic loss (bottom panel) across
different forecast horizons. The left panel corresponds to forecast horizon h = 1, while the right panel is for
h = 1, . . . , 7. Each cell reports the percentage of series for which the p-value of the DM-test is below 0.05
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Model Confidence Set
MCS results (104 bootstrap sample) evaluated using absolute loss (top panels) and quadratic loss (bottom
panel) across different forecast horizons (h = 1 and h = 1, . . . , 7). Each cell reports the percentage of series
for which that approach is in the Model Confidence Set across different thresholds (δ ∈ {95%, 90%, 80%})

h = 1 h = 1 : 7

Approach δ = 95% δ = 90% δ = 80% δ = 95% δ = 90% δ = 80%

Absolute loss - All 23 time series
Base (incoherent forecasts) and single model reconciliation
tbats 56.5 56.5 52.2 78.3 69.6 56.5
tbatsshr 78.3 73.9 60.9 87.0 82.6 69.6
Combination (incoherent forecasts)
ew 87.0 87.0 78.3 95.7 91.3 78.3
owvar 95.7 95.7 82.6 95.7 91.3 82.6
owcov 73.9 69.6 60.9 73.9 65.2 43.5
Coherent combination
src 91.3 91.3 87.0 95.7 95.7 87.0
screw 91.3 91.3 87.0 95.7 91.3 78.3
scrvar 100.0 100.0 91.3 91.3 91.3 87.0
scrcov 82.6 78.3 73.9 78.3 69.6 65.2
occ 100.0 100.0 95.7 95.7 95.7 87.0

h = 1 h = 1 : 7

Approach δ = 95% δ = 90% δ = 80% δ = 95% δ = 90% δ = 80%

Quadratic loss - All 23 time series
Base (incoherent forecasts) and single model reconciliation
tbats 65.2 65.2 60.9 91.3 73.9 73.9
tbatsshr 73.9 69.6 65.2 95.7 82.6 69.6
Combination (incoherent forecasts)
ew 87.0 78.3 60.9 95.7 87.0 82.6
owvar 100.0 82.6 78.3 91.3 87.0 82.6
owcov 78.3 69.6 52.2 78.3 60.9 34.8
Coherent combination
src 95.7 91.3 82.6 91.3 91.3 91.3
screw 95.7 87.0 73.9 91.3 91.3 91.3
scrvar 95.7 95.7 95.7 91.3 91.3 91.3
scrcov 82.6 82.6 73.9 73.9 60.9 56.5
occ 100.0 95.7 95.7 91.3 91.3 91.3
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Australian electricity generation dataset
Daily electricity generation from various energy sources in Australia (AEMO, Panagiotelis et al., 2023)

Linear combination matrix (8× 15)
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23 time series with 15 bottom-level series

Range: 11 June 2019 – 10/06/2020 (1 year)

Forecasting experiment: expanding window,
daily step and 7-step ahead forecast horizons

p = 3 base forecasts (R package forecast):

stlf Seasonal and Trend decomposition using Loess

arima AutoRegressive Integrated Moving Average

tbats Exponential smoothing with Box-Cox transfor-

mation, ARMA errors, Trend and Seasonality

Accuracy indices: AvgRelMAE and Av-
gRelMSE + MCB, MCS and DM-test

n Negativity issues: numerical optimization
with non-negativity and equality constraints
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AvgRelMAE for the Australian electricity generation dataset
Red: worse than the benchmark (ew). Bold: the best approach. Italic: second best approach

Forecast horizon

Approach h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 1:7

Base (incoherent forecasts) and single model reconciliation
tbats 1.0447 1.0515 1.0348 1.0266 1.0305 1.0288 1.0201 1.0331
tbatsshr 1.0320 1.0413 1.0231 1.0134 1.0212 1.0208 1.0188 1.0235

Combination (incoherent forecasts)
ew 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
owvar 0.9927 0.9921 0.9982 0.9983 0.9967 0.9967 0.9990 0.9965
owcov 1.0216 1.0208 1.0390 1.0423 1.0307 1.0250 1.0325 1.0309

Coherent combination
src 0.9939 0.9941 0.9919 0.9895 0.9887 0.9908 0.9933 0.9915
screw 0.9952 0.9959 0.9911 0.9908 0.9908 0.9932 0.9961 0.9930
scrvar 0.9819 0.9803 0.9869 0.9895 0.9887 0.9913 0.9972 0.9882
scrcov 1.0081 1.0081 1.0270 1.0327 1.0245 1.0197 1.0250 1.0215
occ 0.9779 0.9745 0.9843 0.9852 0.9851 0.9880 0.9926 0.9843

R package FoCo2

Coherent forecast combi-
nation outperforms inco-
herent approaches

scrvar is a strong alternative
among sequential coherent
combination procedures

occ provides the most ac-
curate forecasts for all
the horizons
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MCB Nemenyi test
R package tsutils (Kourentzes, 2023). The Friedman test p-value is reported in the lower right corner.
The mean rank of each approach is shown to the right of its name. Statistical differences are indicated if
the intervals of two forecast procedures do not overlap|
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